2,223 research outputs found

    Design of Dual-band Branch-Line Coupler Based on Shunt Open-Circuit DCRLH Cells

    Get PDF
    In this article, the shunt open-circuit dual composite right/left-handed (DCRLH) cell is initially proposed and one dual-band branch-line coupler based on the proposed cells is designed. It is found that, compared with DCRLH cell, the frequency selectivity, matching condition and adjustment range of the shunt open-circuit DCRLH cell improve greatly. Moreover, the shunt open-circuit DCRLH cell exhibits two adjustable frequency points with -90degrees phase shift within its first two passbands. In order to explore this exotic property effectively, the influence of the primary geometrical parameter is investigated through parametric analysis. Thus, one dual-band branch-line coupler based on the shunt open-circuit DCRLH cells is designed. Both simulated and measured results indicate that comparative performance is achieved. Different from part of previous dual-band branch line couplers, for the proposed coupler, the signs of phase difference of two output ports within the two operating frequency bands are identical with each other. This branch-line coupler is quite suitable for the application which is sensitive to the variation of phase difference and its effective area is compact

    Asymptotic distributions of the signal-to-interference ratios of LMMSE detection in multiuser communications

    Full text link
    Let sk=1N(v1k,...,vNk)T,{\mathbf{s}}_k=\frac{1}{\sqrt{N}}(v_{1k},...,v_{Nk})^T, k=1,...,Kk=1,...,K, where {vik,i,k\{v_{ik},i,k =1,...}=1,...\} are independent and identically distributed random variables with Ev11=0Ev_{11}=0 and Ev112=1Ev_{11}^2=1. Let Sk=(s1,...,sk1,{\mathbf{S}}_k=({\mathbf{s}}_1,...,{\mathbf{s}}_{k-1}, sk+1,...,sK){\mathbf{s}}_{k+1},...,{\mathbf{s}}_K), Pk=diag(p1,...,{\mathbf{P}}_k=\operatorname {diag}(p_1,..., pk1,pk+1,...,pK)p_{k-1},p_{k+1},...,p_K) and \beta_k=p_k{\mathbf{s}}_k^T({\mathb f{S}}_k{\mathbf{P}}_k{\mathbf{S}}_k^T+\sigma^2{\mathbf{I}})^{-1}{\math bf{s}}_k, where pk0p_k\geq 0 and the βk\beta_k is referred to as the signal-to-interference ratio (SIR) of user kk with linear minimum mean-square error (LMMSE) detection in wireless communications. The joint distribution of the SIRs for a finite number of users and the empirical distribution of all users' SIRs are both investigated in this paper when KK and NN tend to infinity with the limit of their ratio being positive constant. Moreover, the sum of the SIRs of all users, after subtracting a proper value, is shown to have a Gaussian limit.Comment: Published at http://dx.doi.org/10.1214/105051606000000718 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Two-dimensional topological superconducting phases emerged from d-wave superconductors in proximity to antiferromagnets

    Full text link
    Motivated by the recent observations of nodeless superconductivity in the monolayer CuO2_{2} grown on the Bi2_{2}Sr2_{2}CaCu2_{2}O8+δ_{8+\delta } substrates, we study the two-dimensional superconducting (SC) phases described by the two-dimensional tt-JJ model in proximity to an antiferromagnetic (AF) insulator. We found that (i) the nodal d-wave SC state can be driven via a continuous transition into a nodeless d-wave pairing state by the proximity induced AF field. (ii) The energetically favorable pairing states in the strong field regime have extended s-wave symmetry and can be nodal or nodeless. (iii) Between the pure d-wave and s-wave paired phases, there emerge two topologically distinct SC phases with (s+s+idd) symmetry, i.e., the weak and strong pairing phases, and the weak pairing phase is found to be a Z2Z_{2} topological superconductor protected by valley symmetry, exhibiting robust gapless non-chiral edge modes. These findings strongly suggest that the high-TcT_{c} superconductors in proximity to antiferromagnets can realize fully gapped symmetry protected topological SC.Comment: 7 pages, 4 figures; revised versio

    Conquer the fine structure splitting of excitons in self-assembled InAs/GaAs quantum dots via combined stresses

    Full text link
    Eliminating the fine structure splitting (FSS) of excitons in self-assembled quantum dots (QDs) is essential to the generation of high quality entangled photon pairs. It has been shown that the FSS has a lower bound under uniaxial stress. In this letter, we show that the FSS of excitons in a general self-assembled InGaAs/GaAs QD can be fully suppressed via combined stresses along the [110] and [010] directions. The result is confirmed by atomic empirical pseudopotential calculations. For all the QDs we studied, the FSS can be tuned to be vanishingly small (<< 0.1 μ\mueV), which is sufficient small for high quality entangled photon emission.Comment: 4 pages, 3 figure, 1 tabl

    Design of Compact Planar Diplexer Based on Novel Spiral-Based Resonators

    Get PDF
    A miniaturized planar diplexer utilizing the novel spiral-based resonators is proposed. The given cell which is initially proposed in this article is composed of two separated rectangular spirals which are asymmetrical to each other and thus, it is called as ‘asymmetrical separated spirals resonator’ (ASSR). ASSR has more superior transmission property than the previous prototype and extremely compact dimension is also achieved. It is demonstrated that ASSR can exhibit bandpass performance with high frequency selectivity and good transmission property within the relatively low frequency band. Based on the given characteristic, one planar diplexer composed of T-junction and two ASSRs is synthesized and the fabricated prototype with compact dimension is achieved, thanks to ASSRs explored. Simultaneously, the transversal dimension of each channel is extremely compact because ASSRs are completely embedded in the feed lines. Both the simulated and measured results indicate that satisfactory impedance matching and high isolation between two channels are achieved. Furthermore, the proposed diplexer is uniplanar and no defected ground structure is introduced

    Compact and Sharp-Rejection Bandstop Filter Using Uniplanar Double Spiral Resonant Cells

    Get PDF
    A novel compact bandstop filter composed of three cascaded uniplanar double spiral resonant cells (UDSRCs) for high attenuation rates is presented. Through the equivalent circuit prediction and parametric analysis, it is found that the UDSRC exhibits two controllable transmission zeros with great design flexibility through tuning the geometry parameters in a small range. Then, the influence of the stage separation between each UDSRC is investigated in order to get the appropriate stage separation. After optimization, a demonstration bandstop filter has been fabricated and measured. The results show that the attenuation rates on the lower and upper sides are 95dB/GHz and 155dB/GHz, respectively. Without any shunt stubs introduced, the length and width of the three cells are 28% and 4% of the guided wavelength at the mid-stopband frequency

    Miniaturization of Branch-Line Coupler Using Composite Right/Left-Handed Transmission Lines with Novel Meander-shaped-slots CSSRR

    Get PDF
    A novel compact-size branch-line coupler using composite right/left-handed transmission lines is proposed in this paper. In order to obtain miniaturization, composite right/left-handed transmission lines with novel complementary split single ring resonators which are realized by loading a pair of meander-shaped-slots in the split of the ring are designed. This novel coupler occupies only 22.8% of the area of the conventional approach at 0.7 GHz. The proposed coupler can be implemented by using the standard printed-circuit-board etching processes without any implementation of lumped elements and via-holes, making it very useful for wireless communication systems. The agreement between measured and stimulated results validates the feasible configuration of the proposed coupler

    Will Sentiment Analysis Need Subculture? A New Data Augmentation Approach

    Full text link
    The renowned proverb that "The pen is mightier than the sword" underscores the formidable influence wielded by text expressions in shaping sentiments. Indeed, well-crafted written can deeply resonate within cultures, conveying profound sentiments. Nowadays, the omnipresence of the Internet has fostered a subculture that congregates around the contemporary milieu. The subculture artfully articulates the intricacies of human feelings by ardently pursuing the allure of novelty, a fact that cannot be disregarded in the sentiment analysis. This paper strives to enrich data through the lens of subculture, to address the insufficient training data faced by sentiment analysis. To this end, a new approach of subculture-based data augmentation (SCDA) is proposed, which engenders six enhanced texts for each training text by leveraging the creation of six diverse subculture expression generators. The extensive experiments attest to the effectiveness and potential of SCDA. The results also shed light on the phenomenon that disparate subculture expressions elicit varying degrees of sentiment stimulation. Moreover, an intriguing conjecture arises, suggesting the linear reversibility of certain subculture expressions. It is our fervent aspiration that this study serves as a catalyst in fostering heightened perceptiveness towards the tapestry of information, sentiment and culture, thereby enriching our collective understanding.Comment: JASIS
    corecore